
Chapter 2

Fibonacci Numbers

Fibonacci numbers introduce vectors, functions and recursion.

Leonardo Pisano Fibonacci was born around 1170 and died around 1250 in
Pisa in what is now Italy. He traveled extensively in Europe and Northern Africa.
He wrote several mathematical texts that, among other things, introduced Europe
to the Hindu-Arabic notation for numbers. Even though his books had to be tran-
scribed by hand, they were widely circulated. In his best known book, Liber Abaci,
published in 1202, he posed the following problem:

A man puts a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if it
is supposed that every month each pair begets a new pair which from the
second month on becomes productive?

Today the solution to this problem is known as the Fibonacci sequence, or
Fibonacci numbers. There is a small mathematical industry based on Fibonacci
numbers. A search of the Internet for “Fibonacci” will find dozens of Web sites and
hundreds of pages of material. There is even a Fibonacci Association that publishes
a scholarly journal, the Fibonacci Quarterly.

A simulation of Fibonacci’s problem is provided by our exm program rabbits.
Just execute the command

rabbits

and click on the pushbuttons that show up. You will see something like figure 2.1.
If Fibonacci had not specified a month for the newborn pair to mature, he

would not have a sequence named after him. The number of pairs would simply

Copyright c⃝ 2011 Cleve Moler
MatlabR⃝ is a registered trademark of MathWorks, Inc.TM

October 4, 2011

17

18 Chapter 2. Fibonacci Numbers

Figure 2.1. Fibonacci’s rabbits.

double each month. After n months there would be 2n pairs of rabbits. That’s a
lot of rabbits, but not distinctive mathematics.

Let fn denote the number of pairs of rabbits after n months. The key fact is
that the number of rabbits at the end of a month is the number at the beginning
of the month plus the number of births produced by the mature pairs:

fn = fn−1 + fn−2.

The initial conditions are that in the first month there is one pair of rabbits and in
the second there are two pairs:

f1 = 1, f2 = 2.

The following Matlab function, stored in a file fibonacci.m with a .m suffix,
produces a vector containing the first n Fibonacci numbers.

function f = fibonacci(n)

% FIBONACCI Fibonacci sequence

% f = FIBONACCI(n) generates the first n Fibonacci numbers.

19

f = zeros(n,1);

f(1) = 1;

f(2) = 2;

for k = 3:n

f(k) = f(k-1) + f(k-2);

end

With these initial conditions, the answer to Fibonacci’s original question about the
size of the rabbit population after one year is given by

fibonacci(12)

This produces

1

2

3

5

8

13

21

34

55

89

144

233

The answer is 233 pairs of rabbits. (It would be 4096 pairs if the number doubled
every month for 12 months.)

Let’s look carefully at fibonacci.m. It’s a good example of how to create a
Matlab function. The first line is

function f = fibonacci(n)

The first word on the first line says fibonacci.m is a function, not a script. The
remainder of the first line says this particular function produces one output result,
f, and takes one input argument, n. The name of the function specified on the first
line is not actually used, because Matlab looks for the name of the file with a .m

suffix that contains the function, but it is common practice to have the two match.
The next two lines are comments that provide the text displayed when you ask for
help.

help fibonacci

produces

FIBONACCI Fibonacci sequence

f = FIBONACCI(n) generates the first n Fibonacci numbers.

20 Chapter 2. Fibonacci Numbers

The name of the function is in uppercase because historically Matlab was case
insensitive and ran on terminals with only a single font. The use of capital letters
may be confusing to some first-time Matlab users, but the convention persists. It
is important to repeat the input and output arguments in these comments because
the first line is not displayed when you ask for help on the function.

The next line

f = zeros(n,1);

creates an n-by-1 matrix containing all zeros and assigns it to f. In Matlab, a
matrix with only one column is a column vector and a matrix with only one row is
a row vector.

The next two lines,

f(1) = 1;

f(2) = 2;

provide the initial conditions.
The last three lines are the for statement that does all the work.

for k = 3:n

f(k) = f(k-1) + f(k-2);

end

We like to use three spaces to indent the body of for and if statements, but other
people prefer two or four spaces, or a tab. You can also put the entire construction
on one line if you provide a comma after the first clause.

This particular function looks a lot like functions in other programming lan-
guages. It produces a vector, but it does not use any of the Matlab vector or
matrix operations. We will see some of these operations soon.

Here is another Fibonacci function, fibnum.m. Its output is simply the nth
Fibonacci number.

function f = fibnum(n)

% FIBNUM Fibonacci number.

% FIBNUM(n) generates the nth Fibonacci number.

if n <= 1

f = 1;

else

f = fibnum(n-1) + fibnum(n-2);

end

The statement

fibnum(12)

produces

ans =

233

21

The fibnum function is recursive. In fact, the term recursive is used in both
a mathematical and a computer science sense. In mathematics, the relationship
fn = fn−1 + fn−2 is a recursion relation In computer science, a function that calls
itself is a recursive function.

A recursive program is elegant, but expensive. You can measure execution
time with tic and toc. Try

tic, fibnum(24), toc

Do not try

tic, fibnum(50), toc

Fibonacci Meets Golden Ratio
The Golden Ratio ϕ can be expressed as an infinite continued fraction.

ϕ = 1 +
1

1 + 1
1+ 1

1+···

.

To verify this claim, suppose we did not know the value of this fraction. Let

x = 1 +
1

1 + 1
1+ 1

1+···

.

We can see the first denominator is just another copy of x. In other words.

x = 1 +
1

x

This immediately leads to

x2 − x− 1 = 0

which is the defining quadratic equation for ϕ,
Our exm function goldfract generates a Matlab string that represents the

first n terms of the Golden Ratio continued fraction. Here is the first section of
code in goldfract.

p = ’1’;

for k = 2:n

p = [’1 + 1/(’ p ’)’];

end

display(p)

We start with a single ’1’, which corresponds to n = 1. We then repeatedly make
the current string the denominator in a longer string.

Here is the output from goldfract(n) when n = 7.

1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1))))))

22 Chapter 2. Fibonacci Numbers

You can see that there are n-1 plus signs and n-1 pairs of matching parentheses.
Let ϕn denote the continued fraction truncated after n terms. ϕn is a rational

approximation to ϕ. Let’s express ϕn as a conventional fracton, the ratio of two
integers

ϕn =
pn
qn

p = 1;

q = 0;

for k = 2:n

t = p;

p = p + q;

q = t;

end

Now compare the results produced by goldfract(7) and fibonacci(7). The
first contains the fraction 21/13 while the second ends with 13 and 21. This is not
just a coincidence. The continued fraction for the Golden Ratio is collapsed by
repeating the statement

p = p + q;

while the Fibonacci numbers are generated by

f(k) = f(k-1) + f(k-2);

In fact, if we let ϕn denote the golden ratio continued fraction truncated at n terms,
then

ϕn =
fn

fn−1

In the infinite limit, the ratio of successive Fibonacci numbers approaches the golden
ratio:

lim
n→∞

fn
fn−1

= ϕ.

To see this, compute 40 Fibonacci numbers.

n = 40;

f = fibonacci(n);

Then compute their ratios.

r = f(2:n)./f(1:n-1)

This takes the vector containing f(2) through f(n) and divides it, element by
element, by the vector containing f(1) through f(n-1). The output begins with

23

2.00000000000000

1.50000000000000

1.66666666666667

1.60000000000000

1.62500000000000

1.61538461538462

1.61904761904762

1.61764705882353

1.61818181818182

and ends with

1.61803398874990

1.61803398874989

1.61803398874990

1.61803398874989

1.61803398874989

Do you see why we chose n = 40? Compute

phi = (1+sqrt(5))/2

r - phi

What is the value of the last element?
The first few of these ratios can also be used to illustrate the rational output

format.

format rat

r(1:10)

ans =

2

3/2

5/3

8/5

13/8

21/13

34/21

55/34

89/55

The population of Fibonacci’s rabbit pen doesn’t double every month; it is
multiplied by the golden ratio every month.

An Analytic Expression
It is possible to find a closed-form solution to the Fibonacci number recurrence
relation. The key is to look for solutions of the form

fn = cρn

24 Chapter 2. Fibonacci Numbers

for some constants c and ρ. The recurrence relation

fn = fn−1 + fn−2

becomes

cρn = cρn−1 + cρn−2

Dividing both sides by cρn−2 gives

ρ2 = ρ+ 1.

We’ve seen this equation in the chapter on the Golden Ratio. There are two possible
values of ρ, namely ϕ and 1− ϕ. The general solution to the recurrence is

fn = c1ϕ
n + c2(1− ϕ)n.

The constants c1 and c2 are determined by initial conditions, which are now
conveniently written

f0 = c1 + c2 = 1,

f1 = c1ϕ+ c2(1− ϕ) = 1.

One of the exercises asks you to use the Matlab backslash operator to solve this
2-by-2 system of simultaneous linear equations, but it is may be easier to solve the
system by hand:

c1 =
ϕ

2ϕ− 1
,

c2 = − (1− ϕ)

2ϕ− 1
.

Inserting these in the general solution gives

fn =
1

2ϕ− 1
(ϕn+1 − (1− ϕ)n+1).

This is an amazing equation. The right-hand side involves powers and quo-
tients of irrational numbers, but the result is a sequence of integers. You can check
this with Matlab.

n = (1:40)’;

f = (phi.^(n+1) - (1-phi).^(n+1))/(2*phi-1)

f = round(f)

The .^ operator is an element-by-element power operator. It is not necessary to
use ./ for the final division because (2*phi-1) is a scalar quantity. Roundoff error
prevents the results from being exact integers, so the round function is used to
convert floating point quantities to nearest integers. The resulting f begins with

f =

1

25

2

3

5

8

13

21

34

and ends with

5702887

9227465

14930352

24157817

39088169

63245986

102334155

165580141

Recap
%% Fibonacci Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Fibonacci Chapter of "Experiments in MATLAB".

% You can access it with

%

% fibonacci_recap

% edit fibonacci_recap

% publish fibonacci_recap

%% Related EXM Programs

%

% fibonacci.m

% fibnum.m

% rabbits.m

%% Functions

% Save in file sqrt1px.m

%

% function y = sqrt1px(x)

% % SQRT1PX Sample function.

% % Usage: y = sqrt1px(x)

%

% y = sqrt(1+x);

%% Create vector

n = 8;

26 Chapter 2. Fibonacci Numbers

f = zeros(1,n)

t = 1:n

s = [1 2 3 5 8 13 21 34]

%% Subscripts

f(1) = 1;

f(2) = 2;

for k = 3:n

f(k) = f(k-1) + f(k-2);

end

f

%% Recursion

% function f = fibnum(n)

% if n <= 1

% f = 1;

% else

% f = fibnum(n-1) + fibnum(n-2);

% end

%% Tic and Toc

format short

tic

fibnum(24);

toc

%% Element-by-element array operations

f = fibonacci(5)’

fpf = f+f

ftf = f.*f

ff = f.^2

ffdf = ff./f

cosfpi = cos(f*pi)

even = (mod(f,2) == 0)

format rat

r = f(2:5)./f(1:4)

%% Strings

hello_world

27

Exercises

2.1 Rabbits. Explain what our rabbits simulation demonstrates. What do the
different figures and colors on the pushbuttons signify?

2.2 Waltz. Which Fibonacci numbers are even? Why?

2.3 Primes. Use the Matlab function isprime to discover which of the first 40
Fibonacci numbers are prime. You do not need to use a for loop. Instead, check
out

help isprime

help logical

2.4 Backslash. Use the Matlab backslash operator to solve the 2-by-2 system of
simultaneous linear equations

c1 + c2 = 1,
c1ϕ+ c2(1− ϕ) = 1

for c1 and c2. You can find out about the backslash operator by taking a peek at
the Linear Equations chapter, or with the commands

help \

help slash

2.5 Logarithmic plot. The statement

semilogy(fibonacci(18),’-o’)

makes a logarithmic plot of Fibonacci numbers versus their index. The graph is
close to a straight line. What is the slope of this line?

2.6 Execution time. How does the execution time of fibnum(n) depend on the
execution time for fibnum(n-1) and fibnum(n-2)? Use this relationship to obtain
an approximate formula for the execution time of fibnum(n) as a function of n.
Estimate how long it would take your computer to compute fibnum(50). Warning:
You probably do not want to actually run fibnum(50).

2.7 Overflow. What is the index of the largest Fibonacci number that can be rep-
resented exactly as a Matlab double-precision quantity without roundoff error?
What is the index of the largest Fibonacci number that can be represented approx-
imately as a Matlab double-precision quantity without overflowing?

2.8 Slower maturity. What if rabbits took two months to mature instead of one?

28 Chapter 2. Fibonacci Numbers

The sequence would be defined by

g1 = 1,

g2 = 1,

g3 = 2

and, for n > 3,

gn = gn−1 + gn−3

(a) Modify fibonacci.m and fibnum.m to compute this sequence.
(b) How many pairs of rabbits are there after 12 months?
(c) gn ≈ γn. What is γ?
(d) Estimate how long it would take your computer to compute fibnum(50) with
this modified fibnum.

2.9 Mortality. What if rabbits took one month to mature, but then died after six
months. The sequence would be defined by

dn = 0, n <= 0

d1 = 1,

d2 = 1

and, for n > 2,

dn = dn−1 + dn−2 − dn−7

(a) Modify fibonacci.m and fibnum.m to compute this sequence.
(b) How many pairs of rabbits are there after 12 months?
(c) dn ≈ δn. What is δ?
(d) Estimate how long it would take your computer to compute fibnum(50) with
this modified fibnum.

2.10 Hello World. Programming languages are traditionally introduced by the
phrase ”hello world”. An script in exm that illustrates some features in Matlab is
available with

hello_world

Explain what each of the functions and commands in hello_world do.

2.11 Fibonacci power series. The Fibonacci numbers, fn, can be used as coefficients
in a power series defining a function of x.

F (x) =
∞∑

n=1

fnx
n

= x+ 2x2 + 3x3 + 5x4 + 8x5 + 13x6 + ...

29

Our function fibfun1 is a first attempt at a program to compute this series. It sim-
ply involves adding an accumulating sum to fibonacci.m. The header of fibfun1.m
includes the help entries.

function [y,k] = fibfun1(x)

% FIBFUN1 Power series with Fibonacci coefficients.

% y = fibfun1(x) = sum(f(k)*x.^k).

% [y,k] = fibfun1(x) also gives the number of terms required.

The first section of code initializes the variables to be used. The value of n is the
index where the Fibonacci numbers overflow.

\excise

\emph{Fibonacci power series}.

The Fibonacci numbers, f_n, can be used as coefficients in a

power series defining a function of x.

\begin{eqnarray*}

F(x) & = & \sum_{n = 1}^\infty f_n x^n \\

& = & x + 2 x^2 + 3 x^3 + 5 x^4 + 8 x^5 + 13 x^6 + ...

\end{eqnarray*}

Our function #fibfun1# is a first attempt at a program to

compute this series. It simply involves adding an accumulating

sum to #fibonacci.m#.

The header of #fibfun1.m# includes the help entries.

\begin{verbatim}

function [y,k] = fibfun1(x)

% FIBFUN1 Power series with Fibonacci coefficients.

% y = fibfun1(x) = sum(f(k)*x.^k).

% [y,k] = fibfun1(x) also gives the number of terms required.

The first section of code initializes the variables to be used. The value of n is the
index where the Fibonacci numbers overflow.

n = 1476;

f = zeros(n,1);

f(1) = 1;

f(2) = 2;

y = f(1)*x + f(2)*x.^2;

t = 0;

The main body of fibfun1 implements the Fibonacci recurrence and includes a test
for early termination of the loop.

for k = 3:n

f(k) = f(k-1) + f(k-2);

y = y + f(k)*x.^k;

if y == t

return

end

30 Chapter 2. Fibonacci Numbers

t = y;

end

There are several objections to fibfun1. The coefficient array of size 1476
is not actually necessary. The repeated computation of powers, x^k, is inefficient
because once some power of x has been computed, the next power can be obtained
with one multiplication. When the series converges the coefficients f(k) increase
in size, but the powers x^k decrease in size more rapidly. The terms f(k)*x^k

approach zero, but huge f(k) prevent their computation.
A more efficient and accurate approach involves combining the computation

of the Fibonacci recurrence and the powers of x. Let

pk = fkx
k

Then, since

fk+1x
k+1 = fkx

k + fk−1x
k−1

the terms pk satisfy

pk+1 = pkx+ pk−1x
2

= x(pk + xpk−1)

This is the basis for our function fibfun2. The header is essentially the same
as fibfun1

function [yk,k] = fibfun2(x)

% FIBFUN2 Power series with Fibonacci coefficients.

% y = fibfun2(x) = sum(f(k)*x.^k).

% [y,k] = fibfun2(x) also gives the number of terms required.

The initialization.

pkm1 = x;

pk = 2*x.^2;

ykm1 = x;

yk = 2*x.^2 + x;

k = 0;

And the core.

while any(abs(yk-ykm1) > 2*eps(yk))

pkp1 = x.*(pk + x.*pkm1);

pkm1 = pk;

pk = pkp1;

ykm1 = yk;

yk = yk + pk;

k = k+1;

end

31

There is no array of coefficients. Only three of the pk terms are required for each
step. The power function ^ is not necessary. Computation of the powers is incor-
porated in the recurrence. Consequently, fibfun2 is both more efficient and more
accurate than fibfun1.

But there is an even better way to evaluate this particular series. It is possible
to find a analytic expression for the infinite sum.

F (x) =

∞∑
n=1

fnx
n

= x+ 2x2 + 3x3 + 5x4 + 8x5 + ...

= x+ (1 + 1)x2 + (2 + 1)x3 + (3 + 2)x4 + (5 + 3)x5 + ...

= x+ x2 + x(x+ 2x2 + 3x3 + 5x4 + ...) + x2(x+ 2x2 + 3x3 + ...)

= x+ x2 + xF (x) + x2F (x)

So

(1− x− x2)F (x) = x+ x2

Finally

F (x) =
x+ x2

1− x− x2

It is not even necessary to have a .m file. A one-liner does the job.

fibfun3 = @(x) (x + x.^2)./(1 - x - x.^2)

Compare these three fibfun’s.

